Alchemy Geopolymer Solutions

AGS is a Technology Licensing Company specializing in the design and development of fly ash based geopolymer products solving problems for multiple industries including oil/gas well solutions.

AGS line of products include:

- Castable and pre-cast refractory concrete
- Castable and pre-cast corrosion resistant concrete
- Well cementing
- Proppants

Coal-fired power plant

Source Material

Value Proposition

Well cementing

- Higher sulfate resistance compared with traditional cementations grouts.
- Lower shrinkage reducing potential cracking
- Enhanced bond to steel casing
- Setting time can be chemically "programmed" using proprietary additives developed using an advanced nanotechnology process.
- Water works as a carrier and not part of the chemical formulation

Proppants

- Lower cost compared with ceramics
- Increased conductivity compared with to sand and resin coated sand
- Increased acid resistant to sulfates
- AGS Spherical-shaped proponents cause lower wear on expensive well equipment compared to sand or resin coated sand

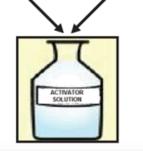
Green Appeal - Environmentally and Economically Attractive

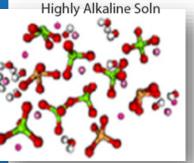
Typical characteristics of AGS Geopolymer Concrete

Test	ASTM Standard	Typical Values/ Properties			
Mechanical Properties					
Compressive Strength*	C-39	80 MPa (11,600 psi)			
Flexural Strength	C-78	7.4 MPa (1,073 psi)			
Elastic Modulus	C-469	43 GPa (6,236 ksi)			
Poisson's Ratio	C-469	0.11-0.2			
Bond Strength	D-4541	9.6 MPa (1,400 psi)			
Setting Time	C-403	25 - 600 minutes			
Water Absorption	C-642	2%-8%			
Density	C-642	1800 - 2350 kg/m ³ (110 - 146 lb/ft ³)			
Durab	ility of Geop	olymer Concrete			
Corrosion Rate when subjected to one	G-02	0.09 μA/cm ²			
year of saltwater exposure					
Chloride Diffusion Coefficient	C-1556	1.45x10 ⁻¹² m ² /s			
% Expansion due to Alkali Silica Reaction	C-1260	Min: 0.04 %			
(ASR)		Max: 0.1%			
Sulfate attack		Stable in 5 % solution of NaSO ₄ & MgSO ₄			
Corrosion Resistance	C-267	High level of resistance to a range of acids and salt			
		solutions (Na2SO4, MgSO4, NaCl, Sulphuric Acid,			
		Hydrochloric Acid)			
Temperature		Thermal Stability up to 2500°F			
Thermal Conductivity		~0.2-0.3 W/m/K			

AGS Geopolymer Software

• AGS has developed a proprietary software to overcome the variability of the raw material chemical compositions and produce a material with constant quality.


DESIGN CALCULATOR Final	Page	
nputs		
Coarse aggregate Name	Specific Gravity (Dimensionless) Unit Weight	wt % in coarse (pcf) Nominal size (in) aggregate
1		
2	•	
3		
Liquids		Desired Specs
Name	Specific Gravity (Dimensionless) Ratio L1/L2	Compressive Strength (PSI)
1		Use statistical corrections
2		Slump (in)
		Air Entrained
		Exposure
Clear	esults	
Show Results		
Show Results	Maar	fine aggregate (lbs)

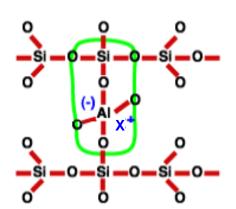

• With the use of AGS's geopolymer software, geopolymer concrete can be designed for a wide range of compressive strengths and slumps as well as for different exposure conditions including freeze-thaw, corrosive environments and elevated temperature/fire by making use of our extensive fly ash database.

Geopolymerization Reaction

Na or K Hydroxide Sodium Silicate

Dissolution of all components

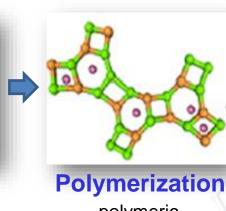
Coal-fired power plant

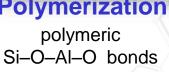


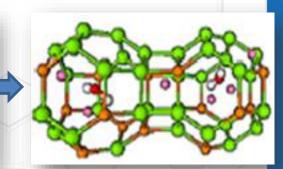
Source Material

Precipitation

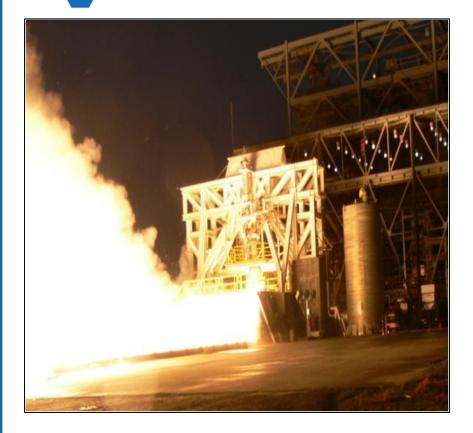
of aluminosilicate


species




X = Na or K

GPC (N-A-S-H) or (K-A-S-H)



Growth

3D polymer chain from Si-O-Al-O bonds

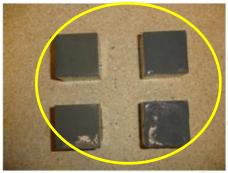
High Temperature Resistance

- Resists shock effect of temperatures up to 4000°F, and continuous temperatures to 2800°F
- Outperforms products currently used on NASA launch pads, American Electric Power coal furnace, and Georgia Pacific acid tanks

High Corrosion Resistance

- Resists the action of most common industrial acids, such as sulfuric, nitric, etc.
- Cost-effective alternative to organic polymers

High Corrosion Resistance 80.00 120.00 **REMAINING COMPRESSIVE** 70.00 Class F fly ash 100.00 60.00 — ■— Class C fly ash Class F MASS LOSS (%) STRENGTH (%) 80.00 → Metakaolin Fly ash Class C 50.00 - OPC fly ash 40.00 60.00 Metakaoli 30.00 ÖPC. 40.00 20.00 20.00 10.00 0.00 0.00 3 5 2 4 6 1 0 1 2 8 6 WEEK⁴

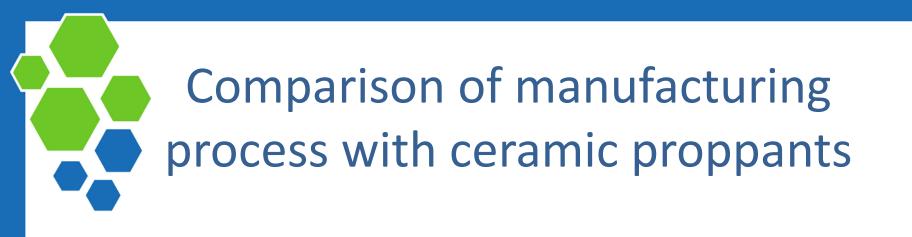

Ordinary Portland Cement

WEEK

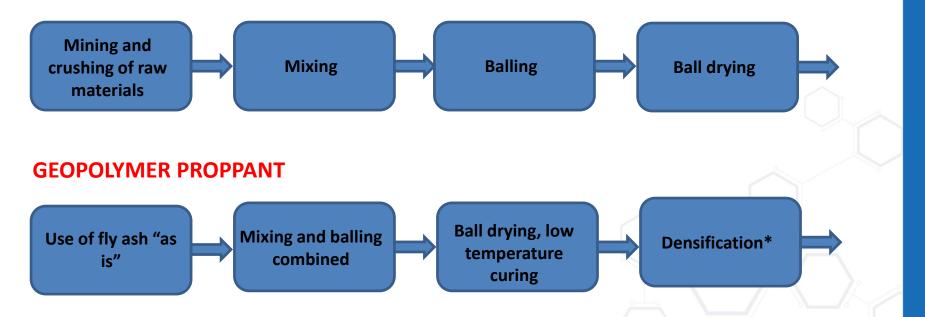
Class C fly ash Geopolymer Class F fly ash Geopolymer

The geopolymer and Portland cements in the vellow circle were tested according to ASTM C-267. They were exposed to a 6% sulfuric acid solution for 8 weeks.

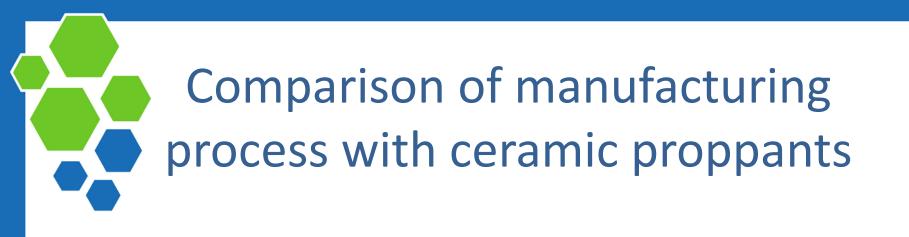
Waste to Energy Solutions

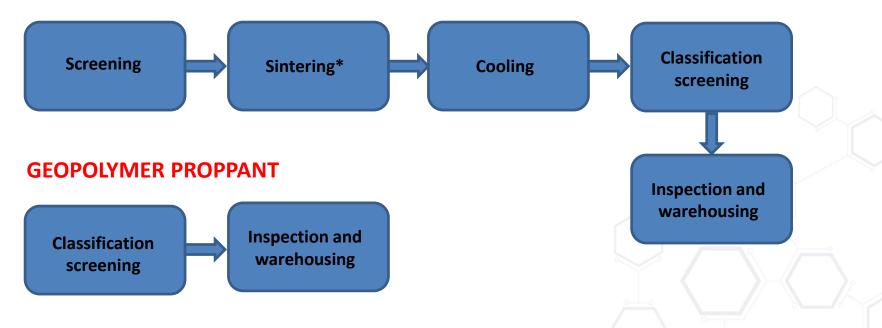

- Recycling of municipal waste ash into geopolymer products.
- Controlled low strength flowable fill manufactured from municipal waste ash to be used in beddings, encasements, closures for tanks and pipes, road crossings and general backfill for trenches and abutments.
- Recycling of landfilled fly and bottom ash.

Proppants

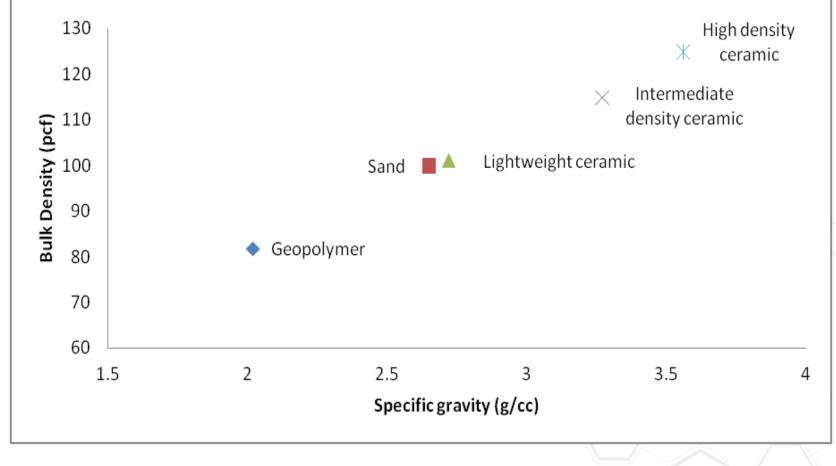


AGS geopolymer proppants offers the following advantages:


- A cost effective alternative to ceramic proppants
- Low energy production process
- Manufactured 85% from fly ash, offering a green appeal
- Can be manufactured near shale plays, dramatically reducing transportation costs
- Offers greater performance than resin coated sand due to higher sphericity
- Lightweight


CERAMIC PROPPANT

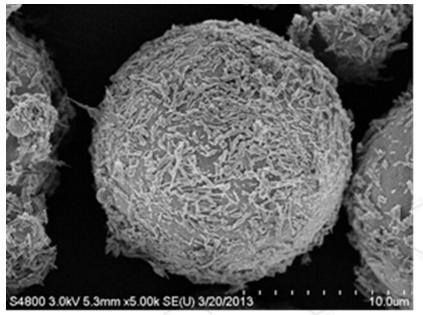
* **Densification** is a low energy proprietary process to enhance the quality of geopolymer proppants.



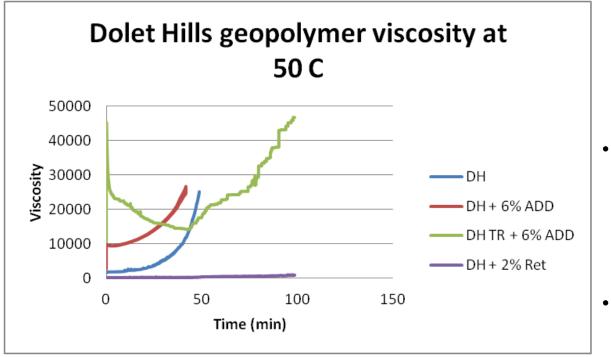
CERAMIC PROPPANT

* The high energy sintering process is not required for fly ash geopolymer proppants.

TYPICAL PROPPANT SPECIFIC GRAVITIES AND BULK DENSITIES



Property	API recommended	Typical/Competitor	Results
Particle size distribution	Mesh 8/12, 10/20, 20/40, 70/140.	Mesh 20/40 or 40/70.	Mesh 20/40 or 40/70.
Sphericity and roundness	0.6 for both	0.9, 0.8	0.9, 0.8
Crush resistance	Size / Max fines by weight at compressive	Max fines by wt.	Max fines by wt.
	stress between 4000- 6000 psi.	@5000psi 0.5% @7500 psi 2.0%	@5000psi 25%
	6-12 mesh / 20% 16-30 mesh / 14% 20-40 mesh / 14% 30-50 mesh / 10%		
Acid solubility	40-70 mesh / 6% <7% solubility in a solution of 12 parts HCl-4 parts HF	4.8% solubility in 12/3 HCI/HF	6.4% solubility in 12/4 HCl/HF
Turbidity	N/A	< 250 NTU	30 NTU
Bulk Density	Not specified	87-125 pcf	84 pcf
Apparent Specific Gravity	Not specified	2.5-3.5	1.34
Conductivity	Not specified	Depending on closure stress.	Not conducted yet


Geopolymer Well Cementing for 'Tight' Oil & Gas Wells

- The main problem associated with geopolymer underground applications is the control of their setting under high temperature and pressure
- AGS well cement is the result of combining geopolymer technology and nano-technology
- Capable of highly controlled rheological behavior across multiple pressure and temperature zones as a function of time

Binder granular coated with 'delayaction' nano-particles

Geopolymer Well Cementing for 'Tight' Oil & Gas Wells • AGS nanoparticle treated geopolymer (DH TB + 6% ADD)

- AGS nanoparticle treated geopolymer (DH TR + 6% ADD) has a thixotropic behavior even at 50 C (122 F), compared to traditional geopolymer formulations (DH and DH + 6% ADD), which start setting immediately.
- AGS geopolymer starts setting approximately 50 minutes after exposed to temperature, and finishes setting at approximately 2 hours, giving time for adequate placing.
- DH + 2% Ret shows that commonly used retarders prevent the setting of geopolymer under this conditions.

Value Proposition

Well cementing

- Higher sulfate resistance compared with traditional cementations grouts.
- Lower shrinkage reducing potential cracking
- Enhanced bond to steel casing
- Setting time can be chemically "programmed" using proprietary additives developed using an advanced nanotechnology process.
- Water works as a carrier and not part of the chemical formulation

Green Appeal - Environmentally and Economically Attractive

Value Proposition

Proppants

- Lower cost compared with ceramics
- Increased conductivity compared with to sand and resin coated sand
- Increased acid resistant to sulfates
- AGS Spherical-shaped proponents cause lower wear on expensive well equipment compared to sand or resin coated sand

Green Appeal - Environmentally and Economically Attractive

Corporate Address: P.O. Box 670 Ruston, LA 71273-3933

Business Development Contact: Mike Higgins, Director of Business Development Phone: 225-907-5611 Email: mike@alchemygeopolymer.com